Diffusion Coefficients

Low Molecular Weight Gases

- a) $D_{is} \approx 10^{-1} \text{ cm}^2/\text{s} (10^{-5} \text{ m}^2/\text{s})$
- b) $D_{is} \propto T^{3/2}$ (Absolute temperature)
- c) $D_{is} \propto 1/P$
- d) D_{is} is not a strong function of i concentration
- e) Gases diffuse about 10 cm/minute

Low Molecular Weight Liquids

- a) $D_{is} \approx 10^{-5} \text{ cm}^2/\text{s} (10^{-9} \text{ m}^2/\text{s})$
- b) $D_{is} \propto T$ (Absolute temperature)
- c) D_{is} is not a strong function of pressure
- d) D_{is} can be a strong function of i concentration
- e) Substances in liquids diffuse about 0.05 cm/minute

Solids

- a) D_{is} can vary over a wide range. It depends on "lattice" structure and interactions. (For example Al in Cu diffuses 10^{15} times slower than Cd in Cu (even though Al is molecularly smaller)
- b) D_{is} is a strong complex function of temperature
- c) D_{is} is not a strong function of pressure
- d) D_{is} is a strong function of i concentration
- e) Difficult to generalize how fast solids diffuse